SoLDES : Service-oriented Lexical Database
Exploitation System

Mehdi Ben Abderrahmen', Bilel GargouriZ, and Mohamed Jmaiel':?

! ReDCAD Laboratory, University of Sfax
ENIS, B.P 1173, 3038 Sfax, Tunisia
mehdi.benabderrahmen@redcad.org

2 MIRACL Laboratory, University of Sfax
FSEGS, BP. 1088, 3018 Sfax, Tunisia

bilel.gargouri@fsegs.rnu.tn
3 Digital Research Center of Sfax,

B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia

mohamed. jmaiel@enis.rnu.tn

Abstract In this work, we focuses on the assisted exploitation of lexi-
cal databases designed according to the LMF standard (Lexical Markup
Framework) ISO-24613. The proposed system is a service-oriented so-
lution which relies on a requirement-based lexical web service genera-
tion approach that expedites the task of engineers when developing NLP
(Natural Language Processing) systems. Using this approach, the devel-
oper will neither deal with the database content or its structure nor use
any language query. Furthermore, this approach will promote a large-
scale reuse of LMF lexical databases by generating lexical web services
for all languages. For evaluating this approach we have tested it on the
Arabic language.

Keywords: LMF, Lexical Database, Exploitation, Requirement, Inter-
rogation, Web Service, Automatic Generation.

1 Introduction

The majority of NLP systems require lexical resources which make lexical com-
ponent one of the most important in the field of NLP. Lexical resources are
the key element for NLP systems. On the basis of the different needs, several
studies dealt with modeling and implementing these resources in different forms
(i.e. simple lexicons, relational lexical databases, XML lexical databases). They
tried to cover most of the linguistic levels [6]. However, these studies have some
drawbacks that can be divided into two classes: some problems related to the
lexical product contents (i.e. linguistic coverage) and others related to their in-
terrogation (i.e. integration with the NLP systems). For the first class, it can be
noted that lexical products remain very dependent on target NLP systems in
the choice of lexical entry structures and the implementation technology. The
linguistic coverage is consequently limited. For the second class, the diversity

pp. 89-109; rec. 2016-02-18; acc. 2016-03-22 89 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

of model and platform implementation limits the possibilities of interoperability
and reuse, in particular, when integrating the same lexical product into differ-
ent NLP systems. This diversity leads to the heterogeneity of the interrogation
mode, update and result presentation.

In order to standardize lexical database design, the internal description for-
mat and the multilingual representation, the LMF (Lexical Markup Framework)
[7], which is a novel standard under the reference ISO-24613, was proposed. This
project proposes an approach for the design of XML databases starting from a
single meta-model in UML for all the programming languages and enables to rep-
resent multilingual lexical data in connection with all the linguistic levels. Some
illustrations of LMF were already proposed (i.e. El-Madar Dictionary for the
Arabic language [11] [12] and Morphalou [14] database for the French language).
However, the LMF project is interesting only in lexical data representation. It
has not yet covered the interrogation and exploitation of the lexical database for
the possible needs of the NLP systems.

In this work, we are interested in the use of LMF lexical databases in order
to satisfy the whole requirements (i.e. NLP systems requirements, user requests,
import and export of external resources). In particular, we focus on the NLP sys-
tem requirements. In this context, we propose an oriented service based system
for the exploitation of the lexical services of LMF standard lexical databases.
This system considers two main phases in the deployment and exploitation of
LMEF services:

The first phase corresponds to the set up of a service oriented architecture for
LMEF services allowing the interrogation of LMF database. It covers three main
steps starting from i) the specification of the main NLP requirements, then ii)
their formulation to concrete queries and finally iii) the implementation and
the deployment of web services that execute these queries to interrogate LMF
database. In this phase, all the steps are realized off-line. An NLP application
could then find out a specific web service among the offered ones to interro-
gate the LMF database. This proposal made the task of engineers easier when
developing NLP applications by discharging them from mastering the database
structure, a query language or even from formulating queries.

The second phase corresponds to the proposal of an automatic lexical web
service generation approach based on the NLP requirements. In fact, in the case
where an NLP application developer couldn’t find a web service corresponding to
his specific requirement, the approach enables to handle this specific requirement
online and generate then automatically the corresponding query and web service.
The resulted service is then added to the lexical web service library to enrich
the exploratory capacity of the given LMF database.

The remainder of this paper is organized as follows: in the next section, we will
present our service-oriented LMF database exploitation system that we called
SoLDES. We will present the different steps leading to the realization of such
system. Then in the third section we will present a requirement-based approach
for the generation of lexical web services. We will give details about the lexical
web service generation tool developed in this context. After that, we will give

Research in Computing Science 109 (2016) 90

SoLDES: Service-oriented Lexical Database Exploitation System

some illustrations of the use of our system and examples of the generation of
some lexical services starting from the expression of specific requirements. Before
the conclusion, we will show some related works that tried to offer solutions in
order to have access to lexical resources in general.

2 Service-Oriented LMF Database Exploitation System:
SoLDES

The exploitation and the reuse of lexical databases in general, go through the
provision of a well designed interface to query the stored lexical data. The devel-
opment of NLP (Natural Language Processing) applications becomes then easier
and more structured. Such interface could be seen as a specific querying system
dedicated to Standard Lexical Database like LMF databases. In this direction,
we propose our service-oriented exploitation system called SoOLDES to interro-
gate LMF databases (fig.1). This section will give an overview of the SoOLDES
system then detail the three main steps leading to the realization of such system.

2.1 SoLDES Overview

SoLDES, as any service-oriented system, provides an extensible web service li-
brary for NLP application developers. These web services are lexical services
allowing the interrogation of LMF databases. They are developed based on NLP
system requirements depicted as queries. In fact, the NLP requirements in term
of lexical resources were firstly identified. Then we have matched to each require-
ment a corresponding query (cf. 2.2). Similar queries were gathered to provide
parameterized queries (cf. 2.3). Finally, we have designed a service model for
each query pattern (cf. 2.4). Hence, the proposed services are developed regard-
ing the depicted service model corresponding to the NLP requirements. Once the
web services are developed and hosted in the service library, their correspond-
ing WSDL file (contains the web service functionality description) is generated
and published into a specific UDDI representing a lexical service catalog. This
service directory enables the full deployment of lexical web services. It will be
consulted by NLP application developers looking up for a specific lexical service
fulfilling their requirements. If a service is found, the developer subscribes to
this service to enable its invocation and achieve the NLP application develop-
ment. It should be noted that sometimes, a specific requirement could not be
satisfied by only one lexical service, but rather by several ones. For this reason,
we consider a service composition layer in the client side which enables the web
service composition to provide an added-value service that could meet complex
lexical requirement of NLP applications. We will detail an example in (cf. 4).
The SoLDES system presented could be seen within a business model involving
three main actors:

— Lexical Service Provider LSP: this is the actor who develops and provides
lexical web services. He is in direct contact with LMF database.

91 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

9 = I N s uDDI
21 3 a Service
3 2 3 Directory|

Lookup/ .
Su bscriﬁy/ N"bl ish

S

Ssezl

I | SLDB

g B T
e Service
Lexical Web Service

Client SOAP/REST| Provider
communication

>
d
N
‘Serv ce Composmon‘

Fig. 1. Service-oriented LMF Database Exploitation System: SoLDES

— Lexical Service Client LSC: he is an actor who will consume lexical services,
mainly represented by NLP applications;

— Lexical Service Directory LSD: this is the UDDI directory allowing the pub-
lication of lexical web services by LSP. It offers the LSC lookup tools to look
for a specific lexical service and make subscription once found.

In this way, the only concern of a client using SOLDES is to consult the LSD and
invoke the needed lexical service that will directly provide required lexical infor-
mation from LMF database. Hence, the client is discharged from likely arduous
tasks like:

— Knowing and mastering the structure of LMF database, its DTD or XML
schema, used extensions, connection mechanisms;

— Learning a query language (like XQuery) and mastering the query formula-
tion, even the complicated ones, usage flexibility, etc. The interaction with
LMF database is used exclusively through web services;

— Ensuring integration of LMF database to NLP applications, no more effort
will be needed since the web services became the most widespread integration
tool.

The client, in general, only has to understand the web service functionality
which is independent from both the implementation technologies and the LMF
database location. Hereafter, we will detail the three main processes involved in
the SOLDES system, namely, the requirements identification, the query formu-
lation and the web service implementation.

Research in Computing Science 109 (2016) 92

SoLDES: Service-oriented Lexical Database Exploitation System
2.2 Requirement Identification

Starting with NLP leader applications such as “Segmenter”, “Lemmatizer” and
“Morphological Analyzer”, the first step is to determine the set of lexical needs
required by these applications according to the studied linguistic level (morpho-
logical, syntactic or semantic). As shown in Fig.2, a NLP application (i.e. App.1)
can use one or more linguistic levels. Indeed, the “Morphological Analyzer”, for
example, requires only a morphological analysis but the “Segmenter” needs, the
syntax analysis, as well. Each level expresses a number of lexical needs to be met
from lexical database (LDB). A lexical database that covers all the aspects of a
natural language must provide lexical information about all the linguistic levels
and thus will satisfy all types of needs that can express an NLP application. Dur-
ing the requirement acquisition step we tried to identify the most generic needs
by a flattened way starting with basic needs. Thus, the most complex needs can
be solved through a decomposition into basic needs. The requirement identifi-
cation operation requires the involvement of linguistic experts (in our case, the
target language is Arabic) and the NLP application developers.

NLP Linguistic Levels
Applications

Morphologic Level
N

MorphoSyntactic
Level

Yy
y LMF
DataBase

Syntactic Level

Syntacticof&emantic
Level
v
Semantic Level

Fig. 2. Requirement identification through linguistic level

2.3 Query Formulation

The requirements identified in the previous step are expressed in a human-
readable manner (abstract form). In order to make them understandable using a
machine, they have to be transformed and formulated as queries (concrete form).
In fact, for each requirement, we have matched a query expressed manually with
XQuery language. This transformation process requires good skills and knowl-
edge of both XQuery syntax and LMF database structure. This is what we have
actually done to spare the complexity for lexical service clients. The result of
the transformation is a set of various queries. Normally, the next step is to im-
plement a web service to execute each query. However, we noticed the existence

93 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

of similarity between some queries having the same output type. Indeed, these
similar queries correspond, in general, to the same requirement but with differ-
ent input parameters. In this case, we gathered each set of similar queries into
one parametrized query implemented by only one configurable service (service
with several methods) instead of having a web service for each similar query.
The main objective of this operation is organizational. For example, there could
exist two similar queries: the first deals with the consistency between Prefixes
and Suffixes and the second with the consistency between Prefixes, Infixes and
Suffixes. The similarity here resides in the inputs "Prefix” and ”Suffix” common
in both queries. As a result, only one service will be devoted to both queries but
with different capabilities.

2.4 Web Service Implementation

After the formulation of the query emerging from NLP requirement identifica-
tion, the development of the web service will be performed. Indeed, a service is
an application entity that handles several tasks, like:

— The connection to the lexical database. In our case, the connection and then
the interrogation of the lexical database are made through DataDirectX-
Query implementing the XQJ (API XQuery for Java);

— Catching NLP requirements as input parameters for the service. This in-
formation is read as external variables whose values will be injected in the
XQuery query;

— Executing the query and giving back result to the NLP application.

A service could be composed of one or several methods according to the require-
ment type (elementary or complex). All the aforementioned tasks are achieved as
processing within the service methods. Therefore, the granularity of a service is
defined by the association of a service method with an elementary requirement.
Hence, a service with several methods generally fulfills a complex requirement.
When a service contains only one method, the corresponding requirement should
be simple (elementary).

For example, a consistency service that asks whether the pair (affixes, root)
is consistent or not. This service contains several methods as shown below.

1 | boolean coherenceRootSuffix (String root, String suffix)
2 | boolean coherencePrefixSuffix (String prefix, String suffix)
3 | boolean coherencePrefSufInf (String prefix, String suffix, infix String)

The development of a lexical web service is followed by the generation of a
standard WSDL file description. This file contains a service capability description
which will help index and reference the service within a lexical service directory
(UDDI). The service capability description precises for each method its inputs
and output types and the service address. The deployment of a lexical web service
is done by adding both the WSDL file to the Lexical service directory (UDDI)
and the lexical web service to the service library. The lexical web service is hence

Research in Computing Science 109 (2016) 94

SoLDES: Service-oriented Lexical Database Exploitation System

ready for use by NLP application. The latter has only to look for lexical web
service corresponding to its requirement to exploit LMF database capabilities.

2.5 Discussion

The SoLDES system as proposed made the task of engineers easier when devel-
oping NLP systems by discharging them from mastering the database structure,
a query language or even from formulating queries. The interrogation of an LMF
database was transformed to a web service application allowing the fluency of
the interoperability between NLP system and LMF databases. However, since
the SOLDES system is based on a three-step process performed manually and of-
fline, a consistent problem is raised; What happens when an NLP system lexical
requirement doesn’t match any lexical web service provided by the library? This
will lead to the limitation of the exploitation of lexical databases. Although the
requirement identification step has involved linguistic experts, all requirements
couldn’t be conceived and then expressed. There are always some NLP applica-
tions that have a specific requirement not already expressed before and should
be considered and covered. For this reason, we proposed as a second phase of
SoLDES system, a lexical web service generation approach enabling to overcome
this problem. This approach enables to automate all the steps leading to the
generation of a lexical web service. This is detailed in the next section.

3 Requirement-Based Lexical Web Service Generation
Approach

3.1 Approach Overview

In order to cover the aforementioned problem, we proposed an approach for
the generation of lexical web services. This approach is composed of three mile-
stones with everyone of which is based on the use of a specific module. In the

Requirement Specified Query Generated
specification Reqmrement Generation Query

e

Lexical Web Lexical Web T
Sariiies Service

Generation

Fig. 3. Requirement-Based Lexical Web Services Generation Approach

first milestone, the NLP developer specifies his requirements in term of Inputs

95 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

and Outputs (Input and Output here represent the values taken from the Data
Categories Registry DCR which is a standard under the number ISO-12620
[10]) through a user-friendly interface belonging to the first module called Re-
quirement Specification. The Input part is generally conditioned by an LMF-QL
grammar compliant formula. At the end of this step, the Requirement Specifi-
cation module generates an abstract form of the user’s need.

In the second milestone, the Query Generation module transforms the ab-
stract form of the requirement to a concrete form written in XQuery.

Finally, in the last milestone, the two forms (abstract and concrete) go to the
third module which will generate both the lexical web service and its description
in WSDL language. After the generation of the query based on the requirement
provided by the user itself through the user-friendly interface, the tool also helps
the generation of a web service corresponding to the generated query regardless
of its complexity. The result of the web service generator tool is two outputs:
the web service code and the WSDL file.

3.2 Requirement Specification

The requirement specification module helps NLP developer through a user-
friendly interface to easily specify his needs in terms of lexical data from LMF
database. This requirement is defined by a pair (Input, Output) which repre-
sents its abstract form. The Output represents the required result, but the Inputs
represent a filter that can restrict the scope of the possible required result. For
the definitions of this pair, we used data categories taken from the DCR (Data
Categories Registry). To define Inputs, we removed all types of abstract sym-
bols, particularly, those used in other languages such as XQBE [4], in order to
facilitate the requirement specification. Then, we replaced these symbols by a
selection of attributes used in the LMF database, which represent data cate-
gories (DC). For the definition of the query Output, we proceeded in the same
manner, with the difference that for the Input we were obliged to work only with
attributes (leaves), and for the Output we could work either with attributes or
elements (Internal Nodes). The query Input must be precise and expressed in
term of attribute-value; consequently an attribute, which is in an internal node
(element which contains many entries), cannot belong to the Input of the query.
More information about this step could be found here [2].

3.3 Query Generation

This module handles the abstract form of the user’s requirement. The Output
of the generation corresponds to an XQuery based query meeting the expressed
requirements. The facility introduced by this tool lies in the fact that the Input
elements make the database structure abstract and do not refer to any partic-
ular level of the database. These levels which are generally present in queries,
will be determined by data categories selected in the requirements. With this
intention, we proposed a high-level language called LMF-QL [2]. This language
allows specifying the logical relation between different data categories selected

Research in Computing Science 109 (2016) 96

SoLDES: Service-oriented Lexical Database Exploitation System

in Input part. The LMF-QL grammar is composed of a set of terminals X, a
set of non terminals V, an axiom S and a set of transformation rules P. Among
the terminals, we used logical operators of two types: unary operator 'not’ that
can be applied on one data category or on an expression and which represents
disjunction, and binary operators ’or’/’and’ that can be applied to two data
categories.

G=(%,V,8,P)

S {or, and, not.(,), E;}

v ={s}

P={8—>(S) |not(S) | (SorsS) | (Sand8) | E;}

W N =

The query generation is done after the requirement specification (abstract form)
by translating this form into XQuery syntax (concrete form). The generated
queries may have different forms depending on the number of entries set in the
input and the output of the query. The Table 1 shows the classification of queries
according to the number of inputs and outputs. Each form represents a general

Table 1. Query class patterns

NumbefNumberResult |Requirement |Number of
of In-|of Type |Type Classes of
puts |Out- patterns

puts
1 0 Booleankxistence 2
2 0 BooleafiConsistency |4
i>1 |j>1 |DifferefGeneral Re-[2""

types |quirement

model for a class of requirements as shown in table I. The first class is to express
the requirement of the existence of a category of data. It is divided into two
patterns because it has two different query models. The second class is used to
test the consistency between the two categories or the other data. For example,
we can test the consistency between the prefix and the suffix. The third class
represents the general case. The number of requests generated depends on both
the number of entries and that of outputs. In general, the number of classes
verifies equation (1):

Numberofclasses _ 2(Numberof]nputs+NumberofOutputs) (1)

3.4 Lexical Web Service Generation Tool

Like the automation of the query generation, the service generation represents
an efficient step to ease the interrogation of LMF databases. Besides, having a

97 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

standard interface, like web services, increases the interoperability aspect of the
lexical resources. In this context, we developed a specific tool based mostly on the
query generated by the Query Generator Module (see fig.4). The query is firstly

Web Service Generator

5 Ny

= £ Web
E 3 U T Code €
S O —>3 € Servic
= (@] % —>{Generator

|G]

l

WSDL WSDL
>
Generator file

Fig. 4. Lexical Web Service Generation Tool

Attribute
Transformer

sent to the Query Handler Module in order to check its consistency. It’s a kind of
query compiler that verifies the syntax of the query before execution, which can
help avoid exceptions due to syntax when calling the web service. The query can
then be transferred to the Code Generator Module to start manufacturing the
web service. The last cited module also needs some inputs that will be gathered
from Attribute Transformer module. These inputs give information about the
user’s needs required in the service code generation. The Attribute Transformer
is responsible for gathering information and transforming it to the suitable forms
in order to make it available for both modules “Code Generator” and “WSDL
Generator”.

Attribute Transformer As already mentioned, the user’s requirements are
involved in all the steps of lexical service generation process. The main role of the
Attribute Transformer Module is to gather the user’s requirement information
in its abstract form in order to transform it to suitable variables that will be
used later by both modules “Code Generator” and “WSDL Generator”. The
information about the user’s requirements is the inputs and output parameters
like their Data Categories, variables names, entry options, etc. This information
could also be a simple text that the user uses to describe query capabilities.
The Attribute Transformer Module catches this information and structures it
by creating dedicated variables with suitable types. The goal is to make it ready
for use by the next modules.

LWS Code Generation This module will build the web service around a
service skeleton that contains 4 main parts:

— Connection to the LMF database.
— Query parameter binding operation
— Execution of the query

Research in Computing Science 109 (2016) 98

SoLDES: Service-oriented Lexical Database Exploitation System

— Preparation of the result of the query

a) The connection to the LMF database: This part of the service code allows
the connection to the lexical database. Actually, there is only one database we
are working with. Besides, the database network address and the connection
and configuration parameters are hardcoded. However, this information could
be easily provided by a user as input parameters.

b) Query parameters binding operation: The code generated in this part serves
the preparation of the query before being executed. In fact, each query contains
input and output parameters. The values of these parameters have to be prepared
before being injected in the query for execution. Two cases are supported (both
cases can be combined):

— The first case where the input value is already expressed by the user while
providing the requirements (handwritten or chosen among predefined values
list of the corresponding data category). In this case, the input value is
hardcoded in the query. No input value injection will be done.

— This the case where the user doesn’t provide values to his inputs but rather
chooses to provide them as external values (as variables). Only the data
category of each input is specified. In this case, the inputs are considered as
arguments in the web service method. These arguments have to be bound
respectively to the variables already declared in the query. Thereby, the
inputs values will be correctly transmitted to the query when invoking the
web service. This case enables the reusability of a configurable lexical query.

In this last case, the Code Generator Module requires the user’s requirements,
precisely information about the inputs and output parameter (data category,
variable name, value entry option, etc), to generate the binding operation code.
This information is caught and structured by the Attribute Transformer Module
to make it available for other modules (like WSDL Generator explained later).

¢) Execution of the query: Once prepared, the query has to be executed. This
part of the service skeleton enables the generation of the service code responsible
for the execution of the query. The execution is based on the DataDirectXQuery
implementing the XQJ (API XQuery for Java).

d) Preparation of the result of the query: The execution of the query generates
an output corresponding to the user’s requirement. This part of the service code
retrieve the result of the query execution and transforms it to the suitable format
specified by the user when generating the query. The possible formats can be
a simple string, XML section, Array, Object, etc. The generated service code
is obtained as Java class source code. We used Apache Axis native JWS (Java
Web Service) to expose and deploy our code as a web service. The generated
bundle contains a deployable web service with all required resources ready for
use in web application. However, our web service generator tool helps modify
the WSDL file automatically generated by Apache Axis Framework. Indeed, we
propose to enrich the basic WSDL file with lexical information that helps index
and reference lexical web service in the lexical service directory UDDI.

99 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

WSDL File generation The last remaining step is to generate the WSDL
file corresponding to the generated web service. Once again, the user’s require-
ments are involved. Indeed, the module WSDL Generator enriches the basic Axis
generated the WSDL file with specific annotations that help NLP application
developers to find out the most appropriate web services. The content of these
annotations is provided by the Attribute Transformer Module. It contains a
human readable description of the generated query provided by the NLP devel-
oper when specifying his requirement. Besides, it also contains the definition of
the query input and output parameters representing the lexical data categories.
There are two kinds of annotations enriching the WSDL file:

a) Annotation describing the query capability: The content of this annotation
is a human readable text provided by the user when specifying his require-
ments. It describes the functionality of the generated query. In fact, there is
only one annotation of this type per generated WSDL file. This annotation is
added as a predefined XML element called <wsdl:documentation> under the
WSDL element <wsdl:operation> under the WSDL element <wsdl:portType>
representing the method of the service. This is an example:

1 <wsdl:portType ” Affixes_ Service”>
2 <wsdl:operation 7"Prefixes_ List”>
3 <wsdl:documentation>This method gives the list of prefixes</wsdl:documentation>

b) Annotation describing the input and output parameters: This annotation
define each input and output of the query. Actually, there are annotations as
many as inputs and outputs. This kind of annotation is added using the pre-
defined XML element <wsdl:documentation> under the element <wsdl:part>
under the WSDL element <wsdl:message>. The text added in the XML tag
<wsdl:documentation> is the definition of the data category of the correspond-
ing input or output.

1 <wsdl:message ?SyntacticFunctionRequest”>
2 <wsdl:part ?syntacticHead” 7xsd:string” >
3 <wsdl:documentation>syntacticHead: central element of a subcategorization

frame< /wsdl:documentation>

4 </wsdl:part>

5 <wsdl:part ”VoiceProperty” 7xsd:string” >

6 <wsdl:documentation>VoiceProperty: is the class of properties that concern the
grammatical encoding of the relationship between the verb and the nominals in
a subject—predicate configuration.</wsdl:documentation>

7 </wsdl:part>

8 </wsdl:message>

3.5 Synthesis

The automatic generation of lexical web services based on the NLP requirements
helps overcome the lack of new specific web service in an initial service library of
SoLDES system. Hence, SOLDES became a complete service-oriented architec-
ture covering even new specific lexical requirements. NLP developers no longer

Research in Computing Science 109 (2016) 100

SoLDES: Service-oriented Lexical Database Exploitation System

fear the complexity of LMF database query with such a tool. In order to assess
and to show the usability of SOLDES system, we will give, in the next section,
some illustrations of the use of our system and examples of the generation of
some lexical services starting from the expression of specific requirements.

4 TIllustration: Lexical Services for Arabic Language

In this section, we present a set of lexical service requirements identified in the
context of Arabic language although most of these requirements could be the
same for other languages. Then we present an example of implementation of
some services. We will show later our service library. We finish this section by
giving two case studies that give an example of how to integrate these services
in the context of an NLP application.

4.1 Characteristics of the Arabic Language.

The recent years have seen a considerable progress in the field of NLP. The
Arabic language does not make exception but it has been much less studied
from the data-processing point of view than English or French. This may be due
to difficulties related to this language. Indeed, by its morphological and syntactic
properties, the Arabic language is considered a difficult language to master in
the NLP field [3]. Among these properties we can quote:

— The letters change form of presentation according to their position in the
word which is written from the right to the left.

— An Arabic word is written with consonants and vowels. The vowels are added
above or below letters (o ,o ,o ,o). They facilitate the reading and the
correct understanding of a text to differentiate words having the same rep-
resentation.

— In Arabic, a word can mean a whole sentence thanks to its mixed structure
which is an agglutination of elements of grammar.

— Arabic is an inflected language. Indeed, the terminations make it possible to
distinguish the mode from the verbs and the function of the names.

4.2 Requirement Identification

The lingware development complexity is due to the multitude of needs that may
present a linguistic application in terms of information, in particular, of lexical
nature. In our experimentation, we studied a set of applications dealing with
the morphology of Arabic in order to identify their lexical needs. Hereafter,
we give the results of this study for some of these applications namely: Arabic
Text Tagger, Morphological analyzer, spellchecker, education through interactive
software.

101 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

Arabic Text Tagging This application can be defined as the set of opera-
tions that can switch between plain text, free of linguistic information, and a
sequence of elementary lexical units (lemmas) accompanied by morphosyntactic
labels. This definition implies successively the choice of the basic unit of seg-
mentation, the process of segmentation itself, the lemmatization of the units
and the association of linguistic information to the lemmas. The phase of lem-
matisation requires the exploitation of the Lexical DataBase in order to join to
a lemma all morphological features that correspond to it. These features can
change according to the lemma [17].

Table 2. Text Tagging

Requirement |Input Output
Part-of- Verb Conjugation Mode , GramPerson,
Speech Tag- Scheme
ging
Deverbal Type, Chained Verb, GramGender,
GramNumber
Noun human characteristics
Human/Non-Human, Proper
Noun/Common Noun, GramGen-
der, GramNumber
Function GramGender, GramNumber
Word

Morphological Analysis and Synthesis This is a program that can recognize
a word in the various forms it can take in sentences. For each found form, the
elements must be isolated and morphological features deduced out of the context
associated with them. The morphological processing of Arabic must cover both
generation processes (or synthesis) and analytical (or recognition). The synthesis
process must allow the generation of a word starting from a root, a scheme and
a set of morphological specifications. Based on [9], we were able to identify all
the needs for these two processes. Table 3 shows these needs.

SpellChecker This kind of application deals with the errors related to the
lexical level. Error handling does not take into account the context of the word
to check. Lexical errors are those related to membership of the words to the
language. The need for the LDB within the framework of this system can be
summarized in the Table 4.

Interactive Teaching The teaching of Arabic through interactive software
must be able to intervene both in recognition (which corresponds to certain
aspects of the difficulties encountered when reading or looking for a word in a

Research in Computing Science 109 (2016) 102

SoLDES: Service-oriented Lexical Database Exploitation System

Table 3. Morphological Analysis and Synthesis

Requirement |Input Output
Morphological|Base Boolean (Exist or not)
Analysis
P,Setl Boolean(Exist or not)
P, Setl Boolean(Consistent or not)
Word Root, chained word
Morphological|Root Boolean(Exist or Not)
Synthesis
P, S, I et Root|Boolean (Consistent or not)
Root List of Associated Base
Root Exist or Not

Table 4. SpellChecker

Requirement |Input Output
Orthography |Word Exist or Not
Selection List of Prefixes
Selection List of Suffixes
Selection List of Infixes
Selection List of Roots
Prefix, Suffix |Boolean (Consistent or Not)
Prefix, Suffix|Boolean (Consistent or Not)
et Infix

dictionary or BDL) and in producing (as regards the construction problems of
Arabic words at the time of expression). Both approaches will need two processes
of analysis and synthesis which have been mentioned in Table 6. Thus, we could
address in the Table 5 the interactive teaching needs.

Table 5. Interactive Teaching

Requirement |Input Output
interactive Verb Grammatical Features
teaching
Non Diacriti-|List of all Diacritical Forms
cal Word
Diacritical PartOfSpeech, (Prefix, Infix, Suffix)
Word list of chained roots
Root All associated forms

Synthesis All the previously cited lexical needs were translated into XQuery
queries and its corresponding lexical web services that were generated using

103 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

Table 6. conjugation synthesis and analysis

Requirement |Input Output
synthesis Verb Conjugated forms in all modes
Conjugation

Verb + conju-|Conjugated forms in this modes
gation mode
Verb + conju-|Conjugated Form
gation mode
+ Person

Analysis Con-|Conjugated |Person, Gender and Number
jugation Form
Conjugated |Related forms
Form
Accomplished [Unaccomplished Form
Form

our SOLDES system. All these generated services could be then used in the
development of NLP applications.

4.3 Arabic Text Spell Checker (ATSC): First Case Study

To experience our approach, we proceeded to the redevelopment of the system [8]
“Arabic Text Spell Checker”. The choice of this system is justified by the richness
of its lexical resource requirements and also the availability of its code. ATSC
uses a lexicon that is formed by the following files: a file for roots, a file for the
prefixes, a file for the suffixes, a file for the infix, a file containing the consistency
matrix between prefixes and suffixes, and a file containing the consistency matrix
between prefixes, suffixes and infixes. During the redevelopment of ATSC, we
focused on the file access. Indeed, we proceeded in two stages:

— locating the access levels to files in the code of the application and determine
the needs that involve from this access.

— Searching from our lexical web service library services that can meet these
needs. A new service has been developed for every unmet need.

Second, we tried to see if some ATSC features could be provided by one or more
of our services. Thus, we have located the “decomposition” service which allows
for a correct word to give its components in terms of root, infix, prefix and
suffix. As experimental results, we note that after using our SOLDES system, we
have reduced in the ATSC new version the number of used java classes from 22
classes in the original version to 7 classes in the new service-oriented version.
Furthermore, the use of SOLDES system for generating lexical web services has
led to the reduction of the number of lines of code. This is due to the replacement
of the methods of existence check of the suffixes, prefixes, infixes and root by the
simple service invocation from our Lexical Service Directory (LSD). The methods
of verification in the original version are very complex with the instructions of

Research in Computing Science 109 (2016) 104

SoLDES: Service-oriented Lexical Database Exploitation System

opening and reading files, the iterative loops and multiple conditional blocks.
All this is replaced by the simple method binding() for the service invocation
which considerably reduced the effort and the time of the development.

4.4 Automatic Summarizer for Arabic: Second Case Study

For the evaluation of our work, we will present another case study that integrates
some of the lexical services from our library during the process of summarizing
an Arabic text that we first present. The production process of an automatic
summary is based on five modules namely the segmentation module which is
the first step that enables to segment the source text into sentences[l]. The
result is sent to another module called the morphological analysis module to
give the morphological features of each word of the text. The syntactic analysis
module receives the output of the morphological analysis module and shows the
syntactic structure of each sentence in the summary. The extraction module for
the relevant sentence extracts the most important phrases. Finally, the revision
module helps obtain a refined extract by eliminating the redundant phrases. In
this process, we will focus on modules that can offer low-level linguistic informa-
tion, namely morphological and syntactic analysis.

In this context, among the requirements, a developer of an automatic sum-
marizer for Arabic concretely requires two specific low-level lexical services that
we call “Requirement 1”7 and “Requirement 2”.

Requirement 1 Here, the developer needs to look for the morphological fea-
tures of a given lexical entry. He uses our tool to precise the different parameters
of his requirement. In this case, the input is a lexical entry having a “Written
Form” as Data Category. The developer has to choose to provide this input as
an external value. In fact, no value will be entered at this level. The value of the
lexical entry will be provided later while using the generated service. The out-
put which the developer wait for is a “WordForm” element supporting several
kind of Data Categories like “Grammatical Number”, “Grammatical Person”
and “VerbFormAspect”. The developer chooses the XML section as output for-
mat and integrate it in the whole summarizer system. The generated query is
shown here:

declare variable $x as document—node(element(*,xdt:untyped)) external;

declare variable $ul as xs:string external;

declare variable $u2 as xs:string external;

for $a0 in

$x//LexicalResource/Lexicon/LexicalEntry /WordForm where $a0/DC/Qatt="writtenForm”
and $a0/DC/@val="$ul”

6 | return for $al in $a0 where $a1/DC/@att="voice” and $al/DC/@val="5u2”

7 | return <result>{$a0}</result>

T W N =

Once the query is generated, the developer generates the corresponding Web
Service to be integrated in the whole system. We present here the result of
the invocation of the generated service with the values of data categories (the

variable $ul will take the value “:}g” and $u2 will take the value “activeVoice”.

105 Research in Computing Science 109 (2016)

==

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

1| <7xml =71.0” encoding="UTF—-8"7>

2 | <result>

3 <WordForm>

4 <DC att="writtenForm” val:”f)g”/>

5 <DC att="grammaticalNumber” val="singular”/>
6 <DC att="grammaticalGender” val="masculine” />
7 <DC att="verbFormAspect” val="accomplished” />
8 <DC att="voice” val="activeVoice”/>

9 <DC att="person” val="thirdPerson”/>

0 < /WordForm>

1| </result>

Requirement 2 In this case, the developer requires to know the syntactic
function of a lexical entry having the voice property value equal to “Active
Voice” and having a given syntactic behavior. Actually two inputs are given
here:

— Input 1: represents the syntactic behavior having “Type” as data category
and will be provided as external value.

— Input 2: having the “Voice Property” as data category and its value is “ac-
tiveVoice”. It will be a hardcoded value.

— Output: having the data category “SyntacticFunction”.

Hereafter, we present the query corresponding to this requirement.

1 | declare variable $x as document—node(element(* ,xdt:untyped)) external;

2 | declare variable $ul as xs:string external;

3 | for $a0 in

4 | $x//LexicalResource/Lexicon/SubcategorizationFrame where $a0/DC/@Qatt="type” and $a0/
DC/@val="%ul”

5 | return for $al in $a0/LexemeProperty where $al/DC/@att="voice” and $al/DC/Qval="
passiveVoice”

6 | return

7 | for $a2 in $al/../SyntacticArgument/DC where $a2/Qatt="syntacticFunction”

8 | return <syntacticFunction>{$a2/@val}</syntacticFunction>

The result of this query will be as follows after invoking the service with the

3 6o

LE S F oo S
value of $ul="alsL, lPua! (sail (cuaze |u”:

PN
2| <syntacticFunction val="Jeld| _:(7/>

8 sor
3 | <syntacticFunction val="4 Jmi"/>

1 ‘ <?xml =71.0” encoding="UTF—8"7> ‘
| |

5 Related Work and Discussion

The main objective of our current research is to promote the use of lexical re-
sources through enhancing the interoperability between involved actors, namely,

Research in Computing Science 109 (2016) 106

SoLDES: Service-oriented Lexical Database Exploitation System

end users applications, NLP applications and lexical databases. The first solu-
tion is the use of normalization (standard) of principles and methods related
to the lexical resources in the context of multilingual communication and cul-
tural diversity. This is done through the adoption of LMF standard for lexical
databases. This can bring NLP application developers to less dependency on
a specific lexical database structure, but this is not enough. In fact, a service
oriented approach effortlessly allowing the access to lexical standard resources
represents a second step solution we are adopting. This solution was also adopted
by several scientific communities having looked to facilitate the extraction of lex-
ical resources according to the needs of users or NLP applications. The proposed
work in [5] is based on the use of web services for the use of NLP features in
a multicultural context. However, the proposed services don’t tackle the access
to the lexical resource .Besides, the proposed work does not address the Arabic
language and its specificities since it doesn’t adopt LMF standard. Finally, the
generated web service is specific to their platform while our work generates a web
service according to the need of the user and can be used by any NLP applica-
tion. In the same context, researchers in [16] present an architecture to connect
customers to NLP frameworks through the use of web services. However, NLP
subsystems do not support standard database and the proposed approach does
not display solution for the needs of the customer’s alignment with the standard
structure. Other works propose the use of a web service but are limited to a
specific usage. We mention the work [15] which deals with the development of
a RESTful Web service to access WORDNET-type semantic lexicons. It gener-
ates LMF compliant XML data. We can also mention the web service tool for
automatic extraction of MWE (Multi-Word Expression) lexicons [13]. The usage
here is limited to the creation of Lexical Resources.

6 Conclusion and Future Work

The research carried out by the ISO around LMF project showed the interest
granted by all the community of NLP researchers to the lexical component in
this field. Starting from this, our work takes the continuation of the representa-
tion aspect to cover the LMF lexical database exploitation. In addition, on the
basis of various needs in lexical resources and technical difficulties facing users
(i.e., NLP applications developers), we proposed to use a Requirement-based
approach for the generation of lexical web services to ensure easier exploitation of
lexical resources and minimize the developers’ efforts. Indeed, this approach dis-
charges the developers from several tasks: knowledge of the database structure,
master of a query language, etc. Moreover, this approach gives the possibility
of serving different users in different corners of the world starting from a sin-
gle database. On another side, the interrogation of the lexical database remains
transparent for the users. Indeed, we worked with parametrized queries gener-
ating according to the listed needs. The query list remains extensible to cover
new needs. The results of our work are being tested for many linguistic levels
in the framework of Arabic spell checker application and during a summarizing

107 Research in Computing Science 109 (2016)

Mehdi Ben Abderrahmen, Bilel Gargouri, Mohamed Jmaiel

process. The lexical database (EIMadar Dictionary)?* used in our work is LMF
compliant. Currently, we are planning to test our approach on various lexical
databases in conformity with LMF, possibly for other languages. In the near
future, we will work on the refinement of the description generated with the
lexical service (WSDL description file) in order to facilitate the discovery of
our services. Subsequently, we will study the integration with applications and
composition scenarios that could give more help to assist NLP developers in the
development of new lingwares.

References

[1] Abdallah, M.B.: Réalisation d’une plateforme de résumé automatique
de textes arabe. Master’s thesis, Ecole Nationale d’Ingénieurs de Sfax
(2008)

[2] Abderrahmen, M.B., Gargouri, B., Jmaiel, M.: LMF-QL: A graphical
tool to query LMF databases for NLP and editorial use. In: Vetulani,
Z., Uszkoreit, H. (eds.) Human Language Technology. Challenges of
the Information Society, Third Language and Technology Conference,
LTC 2007, Poznan, Poland, October 5-7, 2007, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 5603, pp. 279-290. Springer
(2007), http://dx.doi.org/10.1007/978-3-642-04235-5_ 24

[3] Aljlayl, M., Frieder, O.: On arabic search: Improving the retrieval
effectiveness via a light stemming approach. In: Proceedings of the
Eleventh International Conference on Information and Knowledge Man-
agement. pp. 340-347. CIKM 02, ACM, New York, NY, USA (2002),
http://doi.acm.org/10.1145/584792.584848

[4] Braga, D., Campi, A., Ceri, S.: Xgbe (xquery by exam-
ple): A visual interface to the standard xml query lan-
guage. ACM Trans. Database Syst. 30(2), 398-443 (Jun 2005),
http://doi.acm.org/10.1145/1071610.1071613

[5] Bramantoro, A., Tanaka, M., Murakami, Y., Schafer, U., Ishida, T.:
A hybrid integrated architecture for language service composition. In:
Web Services, 2008. ICWS ’08. IEEE International Conference on. pp.
345-352 (Sept 2008)

[6] Francopoulo, G.: Proposition de norme des Lex-
iques pour le traitement automatique du langage.
http://pauillac.inria.fr /atoll /RNIL/TC37SC4-docs/NO7.pdf (2003)

[7] Francopoulo, G., George, M.: Model Description, pp. 19-40. John Wiley
& Sons, Inc. (2013), http://dx.doi.org/10.1002/9781118712696.ch2

[8] Hamadou, A.B.: Vérification et correction automatiques par analyse
affixale des textes écrits en langage naturel : le cas de I’arabe non voyellé.
Ph.D. thesis, Faculté des Sciences de Tunis (1993)

[9] Hassoun, M.: Conception d’un dictionnaire pour le traitement automa-
tique de I'arabe dans différents contextes d’application. Ph.D. thesis,
Université Claude Bernard-Lyon I (1987)

4 .
elmadar.miracl-apps.com

Research in Computing Science 109 (2016) 108

SoLDES: Service-oriented Lexical Database Exploitation System

[10] ISO 12620:2009: Terminology and other language and content resources
— Specification of data categories and management of a Data Category
Registry for language resources, vol. 2009. ISO, Geneva, Switzerland
(Dec 2009)

[11] Khemakhem, A., Gargouri, B., Haddar, K., Ben Hamadou, A.:
LMF for Arabic, pp. 83-98. John Wiley & Sons, Inc. (2013),
http://dx.doi.org/10.1002/9781118712696.ch6

[12] Khemakhem, A., Gargouri, B., Hamadou, A.B.: LMF standardized dic-
tionary for Arabic language. In: Proceedings of the 1st International
Conference on Computing and Information Technology (ICCIT 2012).
pp. 522-527 (2012)

[13] Quochi, V., Frontini, F., Rubino, F.: A MWE acquisition and lexi-
con builder web service. In: Kay, M., Boitet, C. (eds.) COLING 2012,
24th International Conference on Computational Linguistics, Proceed-
ings of the Conference: Technical Papers, 8-15 December 2012, Mumbai,
India. pp. 2291-2306. Indian Institute of Technology Bombay (2012),
http://aclweb.org/anthology/C/C12/C12-1140.pdf

[14] Romary, L., Salmon-Alt, S., Francopoulo, G.: Standards going concrete:
from LMF to Morphalou. In: The 20th International Conference on
Computational Linguistics - COLING 2004. coling, Genéve/Switzerland
(2004), https://hal.inria.fr/inria-00121489

[15] Savas, B., Hayashi, Y., Monachini, M., Soria, C., Calzolari, N.: An
Imf-based web service for accessing wordnet-type semantic lexicons.
In: Chair), N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J.,
Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Sev-
enth International Conference on Language Resources and Evaluation
(LREC’10). European Language Resources Association (ELRA), Val-
letta, Malta (may 2010)

[16] Witte, R., Gitzinger, T.: A General Architecture for Connecting NLP
Frameworks and Desktop Clients using Web Services. In: Kapetanios,
E., Sugumaran, V., Spiliopoulou, M. (eds.) 13th International Con-
ference on Applications of Natural Language to Information Systems
(NLDB 2008). LNCS, vol. 5039, pp. 317-322. Springer, London, UK
(June 24-27 2008)

[17] Zaafrani, R.: Développement dun environnement interactif
d’apprentissage avec ordinateur de l’arabe langue étrangere. Ph.D.
thesis, ENSSIB/Université Lumiére Lyon 2 (2002)

109 Research in Computing Science 109 (2016)

